The small, secreted immunoglobulin protein ZIG-3 maintains axon position in Caenorhabditis elegans.

نویسندگان

  • Claire Bénard
  • Nartono Tjoe
  • Thomas Boulin
  • Janine Recio
  • Oliver Hobert
چکیده

Vertebrate and invertebrate genomes contain scores of small secreted or transmembrane proteins with two immunoglobulin (Ig) domains. Many of them are expressed in the nervous system, yet their function is not well understood. We analyze here knockout alleles of all eight members of a family of small secreted or transmembrane Ig domain proteins, encoded by the Caenorhabditis elegans zig ("zwei Ig Domänen") genes. Most of these family members display the unusual feature of being coexpressed in a single neuron, PVT, whose axon is located along the ventral midline of C. elegans. One of these genes, zig-4, has previously been found to be required for maintaining axon position postembryonically in the ventral nerve cord of C. elegans. We show here that loss of zig-3 function results in similar postdevelopmental axon maintenance defects. The maintenance function of both zig-3 and zig-4 serves to counteract mechanical forces that push axons around, as well as various intrinsic attractive forces between axons that cause axon displacement if zig genes like zig-3 or zig-4 are deleted. Even though zig-3 is expressed only in a limited number of neurons, including PVT, transgenic rescue experiments show that zig-3 can function irrespective of which cell or tissue type it is expressed in. Double mutant analysis shows that zig-3 and zig-4 act together to affect axon maintenance, yet they are not functionally interchangeable. Both genes also act together with other, previously described axon maintenance factors, such as the Ig domain proteins DIG-1 and SAX-7, the C. elegans ortholog of the human L1 protein. Our studies shed further light on the use of dedicated factors to maintain nervous system architecture and corroborate the complexity of the mechanisms involved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The small, secreted immunoglobulin protein ZIG-3 maintains axon position in C. elegans

Vertebrate and invertebrate genomes contain scores of small secreted or transmembrane proteins with two immunoglobulin (Ig) domains. Many of them are expressed in the nervous system, yet their function is not well understood. We analyze here knockout alleles of all 8 members of a family of small secreted or transmembrane Ig domain proteins, encoded by the C. elegans zig ("zwei Ig Domänen") gene...

متن کامل

The Secreted Immunoglobulin Domain Proteins ZIG-5 and ZIG-8 Cooperate with L1CAM/SAX-7 to Maintain Nervous System Integrity

During nervous system development, neuronal cell bodies and their axodendritic projections are precisely positioned through transiently expressed patterning cues. We show here that two neuronally expressed, secreted immunoglobulin (Ig) domain-containing proteins, ZIG-5 and ZIG-8, have no detectable role during embryonic nervous system development of the nematode Caenorhabditis elegans but are j...

متن کامل

Identification of spatial and temporal cues that regulate postembryonic expression of axon maintenance factors in the C. elegans ventral nerve cord.

Patterns of gene expression are under precise spatial and temporal control. A particularly striking example is represented by several members of the zig gene family, which code for secreted immunoglobulin domain proteins required for maintaining ventral nerve cord organization in Caenorhabditis elegans. These genes are coordinately expressed in a single interneuron in the ventral nerve cord, kn...

متن کامل

DIG-1, a novel giant protein, non-autonomously mediates maintenance of nervous system architecture.

Dedicated mechanisms exist to maintain the architecture of an animal's nervous system after development is completed. To date, three immunoglobulin superfamily members have been implicated in this process in the nematode Caenorhabditis elegans: the secreted two-Ig domain protein ZIG-4, the FGF receptor EGL-15 and the L1-like SAX-7 protein. These proteins provide crucial information for neuronal...

متن کامل

Kinesin-1 acts with netrin and DCC to maintain sensory neuron position in Caenorhabditis elegans.

The organization of neurons and the maintenance of that arrangement are critical to brain function. Failure of these processes in humans can lead to severe birth defects, mental retardation, and epilepsy. Several kinesins have been shown to play important roles in cell migration in vertebrate systems, but few upstream and downstream pathway members have been identified. Here, we utilize the gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 183 3  شماره 

صفحات  -

تاریخ انتشار 2009